3.2095 \(\int (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2} \, dx\)

Optimal. Leaf size=152 \[ \frac{2 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2}}{7 e^3 (a+b x)}-\frac{4 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)}{5 e^3 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^2}{3 e^3 (a+b x)} \]

[Out]

(2*(b*d - a*e)^2*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)) - (4*b*(b*d - a*e)*(d + e*x)
^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^3*(a + b*x)) + (2*b^2*(d + e*x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
)/(7*e^3*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0655219, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {770, 21, 43} \[ \frac{2 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2}}{7 e^3 (a+b x)}-\frac{4 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)}{5 e^3 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^2}{3 e^3 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(2*(b*d - a*e)^2*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)) - (4*b*(b*d - a*e)*(d + e*x)
^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^3*(a + b*x)) + (2*b^2*(d + e*x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
)/(7*e^3*(a + b*x))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int (a+b x) \left (a b+b^2 x\right ) \sqrt{d+e x} \, dx}{a b+b^2 x}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int (a+b x)^2 \sqrt{d+e x} \, dx}{a b+b^2 x}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac{(-b d+a e)^2 \sqrt{d+e x}}{e^2}-\frac{2 b (b d-a e) (d+e x)^{3/2}}{e^2}+\frac{b^2 (d+e x)^{5/2}}{e^2}\right ) \, dx}{a b+b^2 x}\\ &=\frac{2 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x)}-\frac{4 b (b d-a e) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^3 (a+b x)}+\frac{2 b^2 (d+e x)^{7/2} \sqrt{a^2+2 a b x+b^2 x^2}}{7 e^3 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0461816, size = 79, normalized size = 0.52 \[ \frac{2 \sqrt{(a+b x)^2} (d+e x)^{3/2} \left (35 a^2 e^2+14 a b e (3 e x-2 d)+b^2 \left (8 d^2-12 d e x+15 e^2 x^2\right )\right )}{105 e^3 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(2*Sqrt[(a + b*x)^2]*(d + e*x)^(3/2)*(35*a^2*e^2 + 14*a*b*e*(-2*d + 3*e*x) + b^2*(8*d^2 - 12*d*e*x + 15*e^2*x^
2)))/(105*e^3*(a + b*x))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 79, normalized size = 0.5 \begin{align*}{\frac{30\,{x}^{2}{b}^{2}{e}^{2}+84\,xab{e}^{2}-24\,x{b}^{2}de+70\,{a}^{2}{e}^{2}-56\,abde+16\,{b}^{2}{d}^{2}}{105\,{e}^{3} \left ( bx+a \right ) } \left ( ex+d \right ) ^{{\frac{3}{2}}}\sqrt{ \left ( bx+a \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2),x)

[Out]

2/105*(e*x+d)^(3/2)*(15*b^2*e^2*x^2+42*a*b*e^2*x-12*b^2*d*e*x+35*a^2*e^2-28*a*b*d*e+8*b^2*d^2)*((b*x+a)^2)^(1/
2)/e^3/(b*x+a)

________________________________________________________________________________________

Maxima [A]  time = 1.16702, size = 162, normalized size = 1.07 \begin{align*} \frac{2 \,{\left (3 \, b e^{2} x^{2} - 2 \, b d^{2} + 5 \, a d e +{\left (b d e + 5 \, a e^{2}\right )} x\right )} \sqrt{e x + d} a}{15 \, e^{2}} + \frac{2 \,{\left (15 \, b e^{3} x^{3} + 8 \, b d^{3} - 14 \, a d^{2} e + 3 \,{\left (b d e^{2} + 7 \, a e^{3}\right )} x^{2} -{\left (4 \, b d^{2} e - 7 \, a d e^{2}\right )} x\right )} \sqrt{e x + d} b}{105 \, e^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2),x, algorithm="maxima")

[Out]

2/15*(3*b*e^2*x^2 - 2*b*d^2 + 5*a*d*e + (b*d*e + 5*a*e^2)*x)*sqrt(e*x + d)*a/e^2 + 2/105*(15*b*e^3*x^3 + 8*b*d
^3 - 14*a*d^2*e + 3*(b*d*e^2 + 7*a*e^3)*x^2 - (4*b*d^2*e - 7*a*d*e^2)*x)*sqrt(e*x + d)*b/e^3

________________________________________________________________________________________

Fricas [A]  time = 0.934852, size = 220, normalized size = 1.45 \begin{align*} \frac{2 \,{\left (15 \, b^{2} e^{3} x^{3} + 8 \, b^{2} d^{3} - 28 \, a b d^{2} e + 35 \, a^{2} d e^{2} + 3 \,{\left (b^{2} d e^{2} + 14 \, a b e^{3}\right )} x^{2} -{\left (4 \, b^{2} d^{2} e - 14 \, a b d e^{2} - 35 \, a^{2} e^{3}\right )} x\right )} \sqrt{e x + d}}{105 \, e^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2),x, algorithm="fricas")

[Out]

2/105*(15*b^2*e^3*x^3 + 8*b^2*d^3 - 28*a*b*d^2*e + 35*a^2*d*e^2 + 3*(b^2*d*e^2 + 14*a*b*e^3)*x^2 - (4*b^2*d^2*
e - 14*a*b*d*e^2 - 35*a^2*e^3)*x)*sqrt(e*x + d)/e^3

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b x\right ) \sqrt{d + e x} \sqrt{\left (a + b x\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)**(1/2)*((b*x+a)**2)**(1/2),x)

[Out]

Integral((a + b*x)*sqrt(d + e*x)*sqrt((a + b*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.17833, size = 142, normalized size = 0.93 \begin{align*} \frac{2}{105} \,{\left (14 \,{\left (3 \,{\left (x e + d\right )}^{\frac{5}{2}} - 5 \,{\left (x e + d\right )}^{\frac{3}{2}} d\right )} a b e^{\left (-1\right )} \mathrm{sgn}\left (b x + a\right ) +{\left (15 \,{\left (x e + d\right )}^{\frac{7}{2}} - 42 \,{\left (x e + d\right )}^{\frac{5}{2}} d + 35 \,{\left (x e + d\right )}^{\frac{3}{2}} d^{2}\right )} b^{2} e^{\left (-2\right )} \mathrm{sgn}\left (b x + a\right ) + 35 \,{\left (x e + d\right )}^{\frac{3}{2}} a^{2} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2),x, algorithm="giac")

[Out]

2/105*(14*(3*(x*e + d)^(5/2) - 5*(x*e + d)^(3/2)*d)*a*b*e^(-1)*sgn(b*x + a) + (15*(x*e + d)^(7/2) - 42*(x*e +
d)^(5/2)*d + 35*(x*e + d)^(3/2)*d^2)*b^2*e^(-2)*sgn(b*x + a) + 35*(x*e + d)^(3/2)*a^2*sgn(b*x + a))*e^(-1)